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Abstract—Tris—urea 1 functioned as a low-molecular-weight gelator for a variety of polar organic solvents. An acetone gel of 1
became a homogeneous solution in response to the addition of anions. The minimum amount of anion necessary for the gel-sol
transition was specific to the anion species. A linear relationship was demonstrated between the amount of anion required and
the total binding constant of 1 with the anion. Re-gelation occurred by addition of BF;-OEt, and with ultrasound irradiation of

the acetone solution of 1 and F~.
© 2007 Elsevier Ltd. All rights reserved.

Researches on low-molecular-weight gelators have been
paid much attention in recent years.! Reversible sol-gel
transitions in gelators responsive to various stimuli such
as light,> redox,? counter ions,* and pH> have been
achieved by various designs of gelators. Molecular rec-
ognition by designed artificial host molecules has
received much attention in recent decades.® Tripodal
structures with binding cavities have widely investigated
as synthetic receptors for anions,’ sugars,® and other
species.” Sol-gel transitions responsive to chemical stim-
uli can be achieved by introduction of an artificial host
molecule into a low-molecular-weight gelator. Indeed
recently, the aggregation of urea or pyromellitamide
gelators was inhibited by anion binding.!° We report
here that a Cs-symmetric tris—urea gelator 1 showed
reversible sol-gel transition in response to chemical
stimuli.

Tris—urea 1 was synthesized in three steps from 1,3,5-
tris(bromomethyl)-2,4,6-triethylbenzene (2) as shown
in Scheme 1. Trinitro compound 3 was prepared by
the reaction of 2 with 3 equiv of 3-nitrophenol. Nitro
groups of 3 were reduced with tin chloride in 1,4-diox-
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Scheme 1. Synthesis of tris—urea 1.

ane solvent to afford triamine 4. The target tris—urea 1
was obtained by the reaction of 4 with phenyl
isocyanate.
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Figure 1. Photographs of acetone gel of 1 responded to chemical stimuli: (a) acetone gel of 1 (2.0 wt %); (b) acetone gel of 1 (2.0 wt %) containing
(from left) 1.1 equiv of TBAF, 1.7 equiv of TBACI, and 10 equiv of TBABFy; (¢) BF5-OEt; (1.0 equiv for TBA salt) mixture after sonication of 1 and
TBAF (left) or TBACI (right) in acetone; (d) ZnBr, (1.0 equiv for TBA salt) mixture after sonication of 1 and TBAF (left) or TBACI (right) in

acetone.

An acetone suspension of 1 formed a translucent gel
after brief sonication'! (critical gelation concentration:
CGC =1.5wt %) (Fig. la). Once formed the gel was
stable at ambient temperatures for at least several
months without crystallizing or melting. Cooling of a
thermally dissolved acetone solution of 1 resulted in pre-
cipitation and no gel formation. Ultrasound irradiation
may cause desolvation of 1 and trigger the gelation.
Brief sonication of mixtures of tris—urea 1 and polar
organic solvents including diethyl phthalate (CGC =
2.0wt%), MeOH (CGC=2.0wt%), and THF
(CGC = 5.0 wt %) also resulted in gel formation. How-
ever, mixtures of 1 and non-polar solvents such as hex-
ane, toluene, and dichloromethane did not form gels.
Scanning electron microscopy (SEM) images of a xero-
gel prepared by freeze-drying of acetone or MeOH gels
showed intertwining nanofibers (see Supplementary
data). Fibrous aggregates would primarily form from
self-complementary hydrogen bonding of urea moieties.
Neither tris—amide (5) nor tris-N-methyl urea (6) deriv-
atives gave gels (Fig. 2). FT-IR spectroscopy of a sample
of xerogel of 1 had a peak assigned to the carbonyl
stretching at 1645 cm™!. Compared with the carbonyl
stretching peak of amorphous 1 (1655 cm™"), the peak
was shlfted to a lower wave number (Vimorphous — Vael =
10 cm ') (see Supplementary data). The shift provides
evidence for the existence of intermolecular hydrogen
bonds of 1 in the gel.!?

An acetone gel of 1 (2.0 wt %) formed a homogeneous
solution on addition to the gelator of F~ (n-BuyN"F ")
in excess (= 1.1 equiv) (Fig. 1b). Addition of less than
1.1 equiv of F~ caused partial disintegration of the gel.
Completion of this phase transition took 12 h at room
temperature, 2 h at 45 °C, and less than 5 min at room
temperature with sonication. Experiments on phase
transitions of an acetone gel of 1 (2.0 wt%) were
performed using a range of anions (n-BuyN"X"). The
minimum amount of halide ions required for complete
gel-sol phase transition increased with the size of ionic
radius. The amounts were 1.7 equiv, 2.0 equiv, and
2.9 equiv for CI™, Br~ and I, respectively (Fig. 1b).
As disintegration of gel is principally caused by anions,

approximately 1.7 equiv of MeysNCl, EtyNCIl, and
n-PryNCI1 were required for a complete gel-sol phase
transition similar to that with n-BuyNCIl. Addition of
1.6 equiv of AcO™ also resulted in a homogeneous solu-
tion. A white suspension was obtained when phosphate
H,PO,~ was mixed with an acetone gel of 1. It is note-
worthy that addition of BF,” never caused complete
phase transition of the gel, and 10 equiv of BF,~ caused
slight melting of the gel (Fig. 1b).

The variation in the amount of anions required for com-
plete gel-sol phase transition should be based on the dif-
ferential binding constants of 1 and the anions involved.
Titration experlments of 1 with a range of anions were
carried out by using 'H NMR in acetone-ds. Data from
titration experiments were analyzed using the curve-
fitting program HypNMR.!? Titration results of halide
ions and AcO~ were fitted with 1:anion stoichiometry
of 1:3. The total binding constant (logf;3) for F~ was
calculated at 11.61 (logK;; =5.05, logK;, =345,
logKj3 =3.11) and the estimated error was +21%. In
the case of F~, coexistence of deprotonation of the urea
moiety may be responsible for such a large error.!* The
other values of logf};3 were calculated at 10.23, 8.81,
7.44, and 9.78 for C1™, Br, I, and AcO™, respectively,
with errors less than 10%. A linear correlation was dem-
onstrated between log 13 and the minimum amount of
anion required for complete gel-sol transition (Fig. 3).
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Figure 2. Structure of tris—amide and tris-N-methylurea 5 and 6.



8992

12.0
—_ ~
© ¢ F
Q ™~
o 11.0- e s
2 N
= . ‘CI
c - Ny
§ 10.0 AN
% AcO ™

<4 N

3 9.0 * N\
= Br ™.
(= \
T 807 o
m \\"Q |
s 7.0 Ne-1
o ~
-

6.0 T T T T T

0.0 05 1.0 1.5 2.0 25 30

Minimum Amount of Anion (equiv)

Figure 3. Plot of total binding constants of 1 with anions in acetone-ds
and minimum amount of anions required for the complete gel-sol
transition.

Self-aggregation of the gel could be reversed by anion
recognition. Titration results for BF,~ were curve-fitted
with a l:anion stoichiometry of 1:1, and the smallest
binding constant (log K;; = 1.27) for BF,~, which could
not cause the gel-sol transition.

An additional focus was on re-gelation in solutions
where gel disintegration had occurred through the addi-
tion of anions. Specific re-gelation would enable identi-
fication of the anions involved. The reaction of a
fluoride ion with boron trifluoride gave a tetrafluorobo-
rate ion'> which did not cause disintegration of the gel.
Addition of boron trifluoride etherate (BF5-OEt,) to the
acetone solution of 1 and F~ caused re-gelation after
brief sonication (Fig. 1c). This sol-gel phase transition
could be repeated at least four times.!® The other ace-
tone solution of 1 and anions were attempted to re-gel-
ate by adding BF;-OFEt,. Re-gelation was also proceeded
in the solution including AcO™ after sonication. Homo-
geneous solutions remained unchanged with added
BF3;-OEt, for the solutions involving CI™, Br™, or I™
(Fig. Ic). Further experiments showed that ZnBr, acted
as a non-specific chemical stimulus for re-gelation of an
acetone solution of 1 and anions. In contrast to
BF;-OEt,, ZnBr, re-gelated all solutions containing
F~,Cl", Br, I, or AcO™ (Fig. 1d).

In conclusion, we have demonstrated that tris—urea 1
acts as low-molecular-weight gelators for a variety of
polar organic solvents, and that reversible sol-gel transi-
tions occur in response to chemical stimuli. These find-
ings may lead to a simple and convenient anion
detection method based on the principles of molecular
recognition.
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Five times phase transition from gel to solution by adding
fluoride ion produce a slight insoluble precipitate, but, re-
gelation by addition of BF5-OEt, was achieved.
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